Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mustafa Odabąsoǧlu, ${ }^{\text {a }}$ Ciǧdem
Albayrak ${ }^{\text {a }}$ and Orhan
Büyükgüngör ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Chemistry, Ondokuz Mayıs University, TR-55139, Samsun, Turkey, and
${ }^{\mathbf{b}}$ Department of Physics, Ondokuz Mayıs
University, TR-55139, Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.039$
$w R$ factor $=0.087$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(3-Methoxysalicylideneamino)-1H-benzimidazole

The molecule of the title compound, $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}_{3}$, deviates slightly from planarity. There is a strong intramolecular $\mathrm{N} \cdots \mathrm{O}$ hydrogen bond of 2.5831 (19) \AA. The molecule exists in the phenol-imine form and the dihedral angle between the two aromatic ring systems is $14.61(5)^{\circ}$.

Comment

The chemical background of (I) was described by Albayrak et al. (2005). The molecular structure with the atom-labelling scheme is shown in Fig.1. Selected bond lengths and angles are listed in Table 1.

In (I), the dihedral angle between the salicylidene and benzimidazole ring systems is $14.61(5)^{\circ}$ and the molecule is less nearly planar than that in the structure of its monohydrate (Albayrak, et al., 2005), in which the corresponding dihedral angle is $1.04(5)^{\circ}$. In (I), the phenol-imine tautomer is favoured over the keto-amine form in the solid state. This fact is evident from the $\mathrm{O} 1-\mathrm{C} 2$ bond distance of 1.3571 (19) \AA, which is consistent with an $\mathrm{O}-\mathrm{C}$ single bond; additionally, the C7-N1 distance of 1.285 (2) \AA is consistent with a $\mathrm{C}=\mathrm{N}$ double bond, as in N -(2-fluoro-3-methoxy)salicylaldimine [$\mathrm{O}-\mathrm{C}=1.347$ (3) \AA and $\mathrm{C}=\mathrm{N} 1.280$ (3) \AA; Ünver et al., 2002] and 3-methoxysalicylidene-2-aminobenzimidazole monohydrate [$\mathrm{O}-\mathrm{C}=1.357$ (2) \AA and $\mathrm{C}=\mathrm{N} 1.287$ (2) \AA; Albayrak, et al., 2005].

Compound (I) exhibits a strong intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond and a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interaction, in addition to intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Experimental

The title compound was prepared by refluxing a mixture of a solution containing o-vanillin ($0.5 \mathrm{~g}, 3.2 \mathrm{mmol}$) in ethanol $(20 \mathrm{ml})$ and a solution containing 2 -aminobenzimidazole ($0.43 \mathrm{~g}, 3.2 \mathrm{mmol}$) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. The resulting orange precipitate was filtered off and recrystallized from ethanol by slow evaporation. Crystals of (I) suitable for X-ray analysis were obtained from the same solution as the crystals of the monohydrate compound (Albayrak, et al., 2005) (yield 95\%; m.p. 492-494 K).

Received 9 December 2004 Accepted 13 December 2004 Online 29 January 2005

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$	$D_{x}=1.351 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=267.28$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 17957
$a=12.5450(9) \AA$	reflections
$b=8.4858(8) \AA$	$\theta=1.8-26.0^{\circ} \AA$
$c=13.2955(10) \AA$	$\mu=0.09 \mathrm{~mm}^{-1}$
$\beta=111.755(6)^{\circ}$	$T=293 \mathrm{~K}$
$V=1314.56(18) \AA^{\circ}$	Prism, red
$Z=4$	$0.28 \times 0.27 \times 0.26 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer ω scans
23491 measured reflections 2590 independent reflections 1519 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.087$
$S=0.88$
2590 reflections
189 parameters

$$
\begin{aligned}
& R_{\text {int }}=0.072 \\
& \theta_{\max }=26.0^{\circ} \\
& h=-15 \rightarrow 15 \\
& k=-10 \rightarrow 10 \\
& l=-16 \rightarrow 16
\end{aligned}
$$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0435 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\max }=0.10 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}$

Figure 1
A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Table 1
Selected geometric parameters $\left(\mathrm{A},{ }^{\circ}\right)$.

C2-O1	$1.3571(19)$	C8-N1	$1.389(2)$
C3-O2	$1.370(2)$	C $9-\mathrm{N} 2$	$1.375(2)$
C7-N1	$1.285(2)$	$\mathrm{C} 14-\mathrm{N} 3$	$1.391(2)$
C8-N3	$1.310(2)$	$\mathrm{C} 15-\mathrm{O} 2$	$1.423(2)$
$\mathrm{C} 8-\mathrm{N} 2$	$1.359(2)$		
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$121.73(15)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$119.33(14)$
N3-C8-N2	$114.09(15)$	$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 9$	$106.57(14)$
N3-C8-N1	$128.03(15)$	$\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 14$	$103.84(14)$
N2-C8-N1	$117.86(15)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{N} 1$	$0.96(3)$	$1.71(3)$	$2.5831(19)$	$150(2)$
C7-H7 3 N3	0.93	2.51	$2.832(2)$	100
N2-H2 $^{\mathrm{i}}$	$0.92(2)$	$2.06(2)$	$2.9317(19)$	$156.5(18)$
N2-H2 $\cdots \mathrm{O}^{\mathrm{i}}$	$0.92(2)$	$2.55(2)$	$3.211(2)$	$129.1(16)$

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$.
H atoms bonded to N and O were located in a difference map and refined isotropically. Other H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.93-0.96 \AA)$, with $U_{\text {iso }}(\mathrm{H})$ values constrained to be $1.5 U_{\text {eq }}$ of the carrier atom for the methyl-group H atoms and $1.2 U_{\text {eq }}$ for the remaining H atoms.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Albayrak, Ç., Odabaşoğlu, M. \& Büyükgüngör, O. (2005). Acta Cryst. E61, o423-o424.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - $A R E A$ and X-RED. Stoe \& Cie, Darmstadt, Germany.
Ünver, H., Kendi, E., Güven, K. \& Durlu, T. N. (2002). Z. Naturforsch. Teil B, 57, 685-690.

